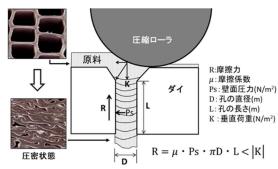
4. 木質燃料の生産 (9)


20250916

木質ペレットの成型固化機構を探る(1)

木質ペレットは、金型に開けられた円筒状小孔に水分率 10~15%の木質粉体を連続して押込み、①円 筒壁との摩擦による強い圧縮力と摩擦熱の発生 → ②木材成分の熱軟化と圧密化 → ③金型通過後の冷却による変形の固定、の経過を経て作成した高密度に固化された成型物である(図表 4.12 参照)。このうち軟化と変形固定にはリグニンの熱軟化と接着性能が大きく関係すると言われている。

本当だろうか? 先ず一般に言われている説を解説したのち、次号で疑問点を指摘する。

◆ 熱軟化とは:熱軟化は分子配列が不規則な非晶質物質に特有の現象である。<u>ある温度に達すると分子</u> 鎖の運動性が増大し、堅く脆い状態(ガラス状)から柔らかく粘りのある状態(ゴム状)へと可逆的に変 化する。この変化が生じる温度を<u>熱軟化点(Ts)</u>とよぶ。身近な例としては、プラスチックやガラスの加 熱成型が挙げられる。材料を加熱して柔らかくした状態で成型し、その後に冷却することによって形状 を保持する。こうした性質は、容器やレンズ、樹脂製品など製造に広く利用されている。

図表4.13 木材成分の軟化点と接着温度

	乾燥状態		湿潤状態		
単離成分	熱軟化点	接着温度	水分率	熱軟化点	接着温度
	°C	°C	%	°C	°C
リグニン	127-193	120-190	7.1-11.3	72-128	50-90
へミセルロース	167-181	170	16.3-18.9	54-56	40-50
セルロース	231-245		10.9-13.8	222-239	

(引用) Goring, D. A. I., Pulp & Paper Mag.Can., 1963, 64 (12), T517-527

- 図表4.12 木質ペレットの成型機構
- ◆ 木材の熱軟化挙動: 木材を構成する成分にも、非晶質物質と同様の熱軟化現象が認められる。Goring (図表 4.13) によると、セルロースの Ts は全乾状態で 200℃以上であり、水分量が変化してもほとんど変化しない。一方で単離したリグニンとへミセルロースの全乾状態での Ts はそれぞれ 120−190℃および 170−180℃である。しかしこれらは水分の影響を強く受け、水分率が高まると Ts が大きく低下する。湿潤状態ではリグニンで約 70℃、ヘミセルロースで約 50℃と、丁度木質ペレット成形時の温度域にまで下がることとなる。さらにこれら成分は熱軟化点付近の温度履歴を経た場合には、冷却後に接着力を発現していることも分かる。これは単離成分の挙動であるが、木材内部でも同様の機構が働くとすれば、リグニンのみならずへミセルロースもペレットの成型・固化に大きな役割を担うことが示唆される。
- ◆ 熱軟化による木材の変形・固化機構:木材は Ts 以下の温度域では硬く、圧密変形を加えても、解圧するとほぼ元の形態に回復する(弾性回復)。それに対して Ts を越える温度域では木材は軟化し、比較的小さい圧力でも変形できる。この状態で圧密すると、解圧後も変形が保持され、圧密変形を維持する(塑性変形)。ここでは木材細胞壁の微細構造が互いに密着して絡みつき、さらに分子間結合の容易な条件が生まれる。その後、材料が金型から押し出されると、小孔内で封じ込められていた水分が蒸散し、同時に冷却が始まる。Ts 以下に冷却されることで、圧密変形は成分間の自己結合によって固定され、高密度に固まったペレットが成型される、と理解されている。

次号では、上記機構に疑問を呈する成型固化現象を、実例を交えて説明する。

すべての木質バイオマス一口メモは「https://info.wbioplfm.net/memo/」で見ることができます。